Circle Ex-10.2 (solved exercise) By-Ashish jha

Ex-10.2 Class 9 Maths Question 1.

Recall that two circles are congruent, if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres
Solution:

Given: Two congruent circles with centres O and O ' and radii r, which have chords $A B$ and $C D$ respectively such that $A B=C D$.
To Prove: $\angle A O B=\angle C O^{\prime} D$
Proof: In $\triangle A O B$ and $\triangle C O^{\prime} D$, we have
$\mathrm{AB}=\mathrm{CD}$ [Given]
$\mathrm{OA}=\mathrm{O} \mathrm{C}$ [Each equal to r$]$
$\mathrm{OB}=\mathrm{O} \mathrm{D}$ [Each equal to r]
$\therefore \triangle \mathrm{AOB} \cong \triangle \mathrm{CO}{ }^{\prime} \mathrm{D}$ [By SSS congruence criteria]
$\Rightarrow \angle A O B=\angle C O ' D$ [C.P.C.T.]
2.Prove that, if chords of congruent circles subtend equal angles at their centres, then the chords are equal.
Solution:

Given: Two congruent circles with centres O \& O^{\prime} and radii r which have chords AB and CD respectively such that $\angle A O B=\angle C O ' D$.

To Prove: $\mathrm{AB}=\mathrm{CD}$
Proof: In $\triangle A O B$ and $\triangle C O^{\prime} D$, we have
OA = O'C [Each equal to r]
OB = O'D [Each equal to r]
$\angle A O B=\angle C O ' D$ [Given]
$\therefore \triangle \mathrm{AOB} \cong \triangle \mathrm{CO}$ 'D [By SAS congruence criteria]
Hence, $A B=C D$ [C.P.C.T.]

